Evolution of Highly Polymorphic T Cell Populations in Siblings with the Wiskott-Aldrich Syndrome
نویسندگان
چکیده
Population level evolutionary processes can occur within a single organism when the germ line contains a mutation that confers a cost at the level of the cell. Here we describe how multiple compensatory mutations arose through a within-individual evolutionary process in two brothers with the immune deficiency Wiskott-Aldrich Syndrome (WAS). As a result, both brothers have T lymphocyte populations that are highly polymorphic at the locus of the germ line defect, and no single allele achieves fixation. WASP, the gene product affected in this disease, is specific to white blood cells where it is responsible for regulating actin cytoskeleton dynamics in a wide range of cellular responses. The brothers inherited a rare allele predicted to result in truncated WASP lacking the carboxy-terminal VCA domains, the region that directly catalyzes actin filament generation. Although the brothers' T cell populations are highly polymorphic, all share a corrective effect relative to the inherited allele in that they restore the VCA domain. This indicates massive selection against the truncated germ line allele. No single somatic allele becomes fixed in the circulating T cell population of either brother, indicating that a regulated step in maturation of the affected cell lineage is severely compromised by the germ line allele. Based on the finding of multiple somatic mutations, the known maturation pathway for T-lineage cells and the known defects of T cells and precursor thymocytes in mice with truncated WASP, we hypothesize that the presence of truncated WASP (WASP Delta VCA) confers an extreme disadvantage in early developing thymocytes, above and beyond the known cost of absence of full-length WASP, and that the disadvantage likely occurs through dominant negative competition of WASP Delta VCA with N-WASP, a protein that otherwise partially compensates for WASP absence in developing thymocytes.
منابع مشابه
Wiskott-Aldrich Syndrome (WAS): A Case Report in Mauritius and Review
Wiskott-Aldrich is an X-lined recessive disorder typically characterized by thrombocytopenia, eczema and recurrent infections. We report the four year treatment progress of a six year old boy who initially presented with vesicular lesions over the trunk, upper and lower extremities and face and blood tinged stools at the age of 2 weeks. From the family pedigree, there were two suspected cases t...
متن کاملEvidence for antigenic selection of large granular lymphocytes in a patient with Wiskott-Aldrich syndrome.
It is now recognized that CD3+ large granular lymphocyte (LGL) proliferations may be clonally derived from their normal CD3+LGL+ counterpart, but the nature of the pressure responsible for the proliferation of these cells remains unclear. We approached this problem by analyzing the diversity of the T-cell receptor repertoire of LGL developed in different clinical settings. Two of our patients h...
متن کاملThe Wiskott-Aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling.
BACKGROUND T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified. DESIGN AND METHODS To address this point, CD4(+) T cells from patients wi...
متن کاملMosaicism of NK cells in a patient with Wiskott-Aldrich syndrome.
Rare cases of somatic mosaicism resulting from reversion of inherited mutations can lead to the attenuation of blood-cell disorders, including Wiskott-Aldrich syndrome (WAS). The impact of the revertant hematopoietic stem or progenitor cells, particularly their representation in blood-cell populations, is of interest because it predicts the outcome of gene therapy. Here we report an 8-year-old ...
متن کاملWASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts
The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008